Copied to
clipboard

G = C22×C3⋊F5order 240 = 24·3·5

Direct product of C22 and C3⋊F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×C3⋊F5, D103Dic3, D10.15D6, C62(C2×F5), (C2×C6)⋊3F5, (C2×C30)⋊2C4, C302(C2×C4), (C6×D5)⋊5C4, D5⋊(C2×Dic3), C10⋊(C2×Dic3), C5⋊(C22×Dic3), C32(C22×F5), C153(C22×C4), (C2×C10)⋊5Dic3, (C3×D5).2C23, D5.2(C22×S3), (C22×D5).4S3, (C6×D5).22C22, (D5×C2×C6).5C2, (C3×D5)⋊4(C2×C4), SmallGroup(240,201)

Series: Derived Chief Lower central Upper central

C1C15 — C22×C3⋊F5
C1C5C15C3×D5C3⋊F5C2×C3⋊F5 — C22×C3⋊F5
C15 — C22×C3⋊F5
C1C22

Generators and relations for C22×C3⋊F5
 G = < a,b,c,d,e | a2=b2=c3=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 416 in 108 conjugacy classes, 53 normal (13 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C23, D5, D5, C10, Dic3, C2×C6, C2×C6, C15, C22×C4, F5, D10, C2×C10, C2×Dic3, C22×C6, C3×D5, C3×D5, C30, C2×F5, C22×D5, C22×Dic3, C3⋊F5, C6×D5, C2×C30, C22×F5, C2×C3⋊F5, D5×C2×C6, C22×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, F5, C2×Dic3, C22×S3, C2×F5, C22×Dic3, C3⋊F5, C22×F5, C2×C3⋊F5, C22×C3⋊F5

Smallest permutation representation of C22×C3⋊F5
On 60 points
Generators in S60
(1 49)(2 50)(3 46)(4 47)(5 48)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 49)(2 46 5 47)(3 48 4 50)(6 58 7 60)(8 57 10 56)(9 59)(11 53 12 55)(13 52 15 51)(14 54)(16 33 17 35)(18 32 20 31)(19 34)(21 43 22 45)(23 42 25 41)(24 44)(26 38 27 40)(28 37 30 36)(29 39)

G:=sub<Sym(60)| (1,49)(2,50)(3,46)(4,47)(5,48)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,49)(2,46,5,47)(3,48,4,50)(6,58,7,60)(8,57,10,56)(9,59)(11,53,12,55)(13,52,15,51)(14,54)(16,33,17,35)(18,32,20,31)(19,34)(21,43,22,45)(23,42,25,41)(24,44)(26,38,27,40)(28,37,30,36)(29,39)>;

G:=Group( (1,49)(2,50)(3,46)(4,47)(5,48)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,49)(2,46,5,47)(3,48,4,50)(6,58,7,60)(8,57,10,56)(9,59)(11,53,12,55)(13,52,15,51)(14,54)(16,33,17,35)(18,32,20,31)(19,34)(21,43,22,45)(23,42,25,41)(24,44)(26,38,27,40)(28,37,30,36)(29,39) );

G=PermutationGroup([[(1,49),(2,50),(3,46),(4,47),(5,48),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,49),(2,46,5,47),(3,48,4,50),(6,58,7,60),(8,57,10,56),(9,59),(11,53,12,55),(13,52,15,51),(14,54),(16,33,17,35),(18,32,20,31),(19,34),(21,43,22,45),(23,42,25,41),(24,44),(26,38,27,40),(28,37,30,36),(29,39)]])

C22×C3⋊F5 is a maximal subgroup of   D10.20D12  D10.10D12  C2×Dic3×F5  C3⋊D4⋊F5  C22×S3×F5
C22×C3⋊F5 is a maximal quotient of   C60.59(C2×C4)  (C2×C12)⋊6F5  Dic10.Dic3  D20.Dic3

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4H 5 6A6B6C6D6E6F6G10A10B10C15A15B30A···30F
order1222222234···456666666101010151530···30
size11115555215···15422210101010444444···4

36 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4S3Dic3D6Dic3F5C2×F5C3⋊F5C2×C3⋊F5
kernelC22×C3⋊F5C2×C3⋊F5D5×C2×C6C6×D5C2×C30C22×D5D10D10C2×C10C2×C6C6C22C2
# reps1616213311326

Matrix representation of C22×C3⋊F5 in GL6(𝔽61)

100000
010000
0060000
0006000
0000600
0000060
,
6000000
0600000
0060000
0006000
0000600
0000060
,
1560000
25590000
00276055
00033655
00556330
00550627
,
100000
010000
0060100
0060010
0060001
0060000
,
1160000
0500000
0000600
0060000
0000060
0006000

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,25,0,0,0,0,56,59,0,0,0,0,0,0,27,0,55,55,0,0,6,33,6,0,0,0,0,6,33,6,0,0,55,55,0,27],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,60,60,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[11,0,0,0,0,0,6,50,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,60,0,0,0,0,0,0,0,60,0] >;

C22×C3⋊F5 in GAP, Magma, Sage, TeX

C_2^2\times C_3\rtimes F_5
% in TeX

G:=Group("C2^2xC3:F5");
// GroupNames label

G:=SmallGroup(240,201);
// by ID

G=gap.SmallGroup(240,201);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,964,5189,887]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽